V-Grade 5 is available for trials and licensing!
Tin Model proudly introduces V-Grade 5, a virtual PVD coater for engineers and researchers who operate or design evaporation-source PVD (physical vapor deposition) systems for thin-film manufacturing. Given the tooling and fixturing, i.e. substrate motion and geometric configuration, of a coating apparatus the numerical tool simulates its coating processes in high precision and realism. As a validation tool, V-Grade 5 helps you to prove a design concept and optimize a new configuration. For thin-film manufacturing, V-Grade 5 allows you to greatly reduce the resources necessary in trial runs and achieve the best possible result for a coating job. 

      V-Grade 5 is now available for trials and licensing. Please visit Products for more details. 
Tin Model LLC
© 2020 Tin Model LLC. All rights reserved. 
  • How to obtain symmetric thickness distribution on lenses?
  • How to achieve thickness uniformity without correction masks?
  • What is the technique of "Terracing"?
  • How single-axis rotation and planetary rotation compare in sputter deposition?
  • How erosion of a sputtering target affects thickness uniformity? 
New: Value-labeled thickness maps added to V-Grade 5S 
To make our PVD modeling tools more user friendly, we recently added false-colored and value-labeled thickness maps to the computational output of V-Grade 5S. Not only you can quickly grasp the thickness distribution through color, but also you can zoom in to examine the thickness value for each sampling point of a surface. 

      The image above shows the thickness distribution on an aspherical lens surface. The labeled are absolute thickness values: nm per gram of source material consumed. (The asymmetry in thickness can be eliminated through mounting the lens with a pivoting angle. Please see case studies for details.)

New: Vapor Plume Fitting to Experimental Data
Tin Model proudly announces the release of V-Grade 5S / Option P, which includes the much-anticipated feature of vapor-plume fitting to  experimental data, whether they are from evaporation or sputter-deposition processes. 

     Tin Model's modeling software treats plume functions with a 3-term polynomial of the cosine: it is capable of describing all experimental observed plume functions, including the evolution of vapor plumes associated with aging of sputtering targets. The input accepts measured thickness data from stationary or rotational deposition runs. 
     With Option P, engineers can characterize PVD sources to a great precision, which, in turn, allows for reliable prediction and control of coating results. Recent experiments have demonstrated the effectiveness of such an approach. The vapor plume distributions shown above were obtained through fitting the polynomials of the cosine, with Option P, to measured thickness values of Ti (evaporated) and Si (sputter-deposited) thin films on stationary and rotating substrates, respectively. The focused vapor plume is typical of electron-beam evaporation sources while the heart-shaped plume is typical of magnetron-sputtering sources. 

     Please contact us, info@tinmodel.com, for more information or requesting an upgrade. 
New Release: V-Grade 5S Plus
​Tin Model LLC proudly announces the release of V-Grade 5S Plus -- a suite of PVD modeling tools with a focus on sputtered thin films.

     V-Grade 5S Plus expands the realm of PVD modeling to include such physical phenomena as plasma-substrate interaction and non-unity sticking of vapor particles. Also new in V-Grade 5S Plus are modeling of linear substrate motion and an advanced thickness control technique: the modulated transit. The computation speed of V-Grade 5S Plus is nearly tripled from our previous versions. 
     Bombardment of thin-film surfaces by energetic species (high-velocity neutrals, ions and electrons) is present in nearly all sputter-deposition processes. Sputter-deposited thin-film materials often owe their desirable properties, i.e. density, hardness and crystallinity, to the bombardment. Some unbalanced magnetrons and High Power Impulse Magnetron Sputtering (HiPIMS) are specifically designed to harness the benefits of the bombardment. Quantifying the effects of such bombardment, however, is usually difficult, particularly when a complex geometry is present. With V-Grade 5S Plus, you can quantify these effects through the corrections they cause (which may be subtle in some cases) to film thickness distribution and to absolute thickness values. 

     V-Grade 5S Plus is constructed on the same platform as our previous releases. It's inherently versatile -- it can seamlessly handle vapor sources of various types and geometries, substrates from flats to arbitrary 3D surfaces, multiple shadow masks of arbitrary shapes and polarity. Its vapor-plume fitting function allows users to determine the plume function of a source from experimental data.

     With V-Grade 5S Plus, you can predict the outcomes of PVD processes to ever greater accuracy. You will be able to optimize your processes with high efficiency and effectiveness. You can improve the quality of your products and maximize the yield of production. You can quickly prove your new concepts for thin-film manufacturing. All these are now possible through dispensing some computer time and mouse clicks. 

     Please visit Products to view a list of functions and features included in V-Grade 5S Plus
September 25, 2018
February 15, 2018
July 14, 2017
As of September 2018 V-Grade 5 is superseded by V-Grade 5S. Tin Model still supports existing V-Grade 5 licenses. Users can upgrade to either V-Grade 5S or V-Grade 5S Plus. 
Check it out: Tin Model is on YouTube
              To better serve the PVD community and our customers, Tin Model has inaugurated its new YouTube channel: Tin Projects. We will use this channel as a venue to communicate with you about our products, to share knowledge and techniques on PVD, and to offer tutorials on our software tools. Please subscribe to the channel and stay updated! 
June 16, 2019